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Abstract

The conservation of animal genetic resources refers to measures taken to
prevent the loss of genetic diversity in livestock populations, including the
protection of breeds from extinction. Creole cattle populations have suffered a
drastic reduction in recent decades owing to absorbent crosses or replacement
with commercial breeds of European or Indian origin. Genetic characterization
can serve as a source of information for conservation strategies to maintain
genetic variation. The objective of this work was to evaluate the levels of
inbreeding and kinship through the use of genomic information. A total of
903 DNAs from 13 cattle populations from Argentina, Bolivia and Uruguay
were genotyped using an SNP panel of 48 K. Also, a dataset of 76 K SNPs from
Peruvian Creole was included. Two inbreeding indices (Fyy; and Fhat2) and
kinship relationships were calculated. In addition, effective population size (N,),
linkage disequilibrium, population composition and phylogenetic relationships
were estimated. In Creole cattle, Fy ranged from 0.14 to 0.03, and Fhat2 was
close to zero. The inferred N, trends exhibited a decline toward the present
for all populations, whereas Creole cattle presented a lower magnitude of N,
than foreign breeds. Cluster analysis clearly differentiated the taurine and
Zebu components (K2) and showed that Bolivian Creole cattle presented Zebu
gene introgression. Despite the population reduction, Creole populations did
not present extreme values of consanguinity and kinship and maintain high
levels of genetic diversity. The information obtained in this work may be useful
for planning conservation programmes for these valuable local animal genetic

breed purity, cattle, consanguinity, effective population size, genetic relatedness, microarray,
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Creole cattle were brought to the American continent
by Spanish conquerors in 1493. They were initially in-
troduced to the Caribbean islands and rapidly spread
across the continent. Subsequent expeditions brought
additional cattle, introducing the first animals to the

© 2024 Stichting International Foundation for Animal Genetics.

Viceroyalty of the Rio de la Plata in 1549 from Potosi
(Bolivia). In 1555, conquerors landed in southern
Brazil and advanced to Asuncion (Paraguay), where
the group divided into two expeditions, one of which
initiated the cattle population in the Argentine pampa
(Giberti, 1970; Primo, 1992). With the more recent in-
troduction of British and zebuine breeds, these Creole
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populations were relegated to marginal areas and
some of them are currently endangered (Domestic
Animal Diversity Information System of the Food
and Agriculture Organization of the United Nations,
FAO, 2021, https://www.fao.org/dad-is).

The genetic diversity of Latin American Creole cattle
populations has long been investigated. The first stud-
ies were done by analyzing their blood group and pro-
tein polymorphisms (Giovambattista et al., 2010). Over
the years, these technologies were replaced by the use of
molecular markers, including autosomal microsatellites,
maternal mitochondrial DNA (mtDNA) and Y chro-
mosome genetic markers, which have been widely used
to characterize different Creole cattle populations and
their genetic relationships (Armstrong et al., 2013; Ginja
et al., 2010; Liron et al., 2002; Lirén, Bravi, et al., 2006;
Lirén, Peral-Garcia, et al., 2006; Magee et al., 2002;
Martinez et al., 2012; Ocampo et al., 2021). In 2019, Ginja
and coauthors published a comprehensive work that in-
cluded data from all Creole cattle populations from the
USA to Argentina and summarized the contribution
of the three types of genetic markers. In recent years,
Creole cattle studies have migrated to genomic analysis,
mainly using low- and medium-density single nucleotide
polymorphism (SNP) microarrays (Campos et al., 2017,
Corredor et al., 2023). In this sense, Falomir-Lockhart
et al. (2019) studied the origin of the polled mutation
in Argentine Creole cattle, and other works described
the genetic diversity and genetic structure of Argentine
Creole cattle and explored their relationship with Creole
cattle from other Latin American countries (McTavish
et al., 2013; Michiels et al., 2023; Raschia & Poli, 2021).
This genomic approach has improved the precision of
studies conducted with microsatellites and uniparental
markers by carrying out analysis of breed composition
and gene introgression as well as breed and individual re-
lationships. Also, this technique can include additional
analyses, like level of inbreeding, kinship, footprint and
whole genome association studies (Eusebi et al., 2019).

Genetic characterization can serve as a source of in-
formation for conservation strategies. Livestock popu-
lations provide a variety of products and services as a
result of their genetic diversity, which is essential for
evolution by natural selection and for genetic improve-
ment programmes. The conservation of animal genetic
resources refers to measures taken to prevent the loss
of genetic diversity in livestock populations, including
the protection of breeds from extinction (FAO, 2007).
Several countries, such as Argentina, Bolivia and Brazil,
have established conservation plans to preserve Creole
populations (da Silva Mariante, 1990a, 1990b; Michiels
et al., 2023). These plans are fundamental because en-
dangered native populations are naturally adapted to
the local environment and contribute a high proportion
of the species genetic diversity. These populations are
vulnerable to accelerated genetic erosion and may need
controlled schemes of support to maintain the individual

genome and diversity of each breed, especially because
of the small herd size (Alderson, 2018; FAO, 2007). In
this sense, genomic data can provide highly useful infor-
mation concerning conservation programme efficiency
and success, enabling a continuous monitoring of genetic
diversity and an improvement of breeding programmes
and mating decisions, leading to a better management of
these key resources (Kristensen et al., 2015).

According to the FAO, there are two main approaches
to manage the genetic diversity of small populations of
livestock. One includes programmes to maintain or in-
crease the genetic variability (by implementing a general
breeding strategy to maintain the breed, planning a mat-
ing strategy to decrease inbreeding and the incorpora-
tion of embryos and semen cryoconservation in the in
situ programme). The second strategy is the optimiza-
tion of selection response and genetic variability within
the population (this approach focuses on adopting a
general breeding strategy to maintain the breed and
the design of a breeding programme that generates ge-
netic improvement while maintaining genetic variability;
FAO, 2013).

However, whereas relationships among Creole cattle
and their origin have been extensively studied, data on
inbreeding, kinship and effective population size in these
native populations are still scarce. For this reason, the
objective of this study was to evaluate the levels of in-
breeding and kinship within and between populations,
the effective population size and the genetic diversity of
Creole cattle from Argentina, Bolivia, Peru and Uruguay
using medium-density SNP microarrays.

MATERIALS AND METHODS
Animal populations

A total of 903 blood samples were collected from adult
cattle from 13 breeds/populations, including: Argentine
Creole (CrAr), Bolivian Creole from Oruro department
(CrAl), Bolivian Creole from Cochabamba department
(CrCoch), Bolivian Creole from La Paz department
(CrHua), Bolivia Creole from the Centro de Ecologia
Aplicada Simon 1. Patino (CrPat), Saavedreiio Creole
(CrSaa), Yacumeiio Creole (CrYa) and Uruguayan
Creole (CrUr); two European taurine breeds — Angus
(AA) and Holstein (Ho); two zebuine — Brahman (Bh)
and Nelore (Ne); and one composite breed (Brangus,
Br). A previously published dataset from 12 Peruvian
Arequipa Fighting Bulls (AFB) was also added to the
present study (Corredor et al., 2023). It should be noted
that population is a comprehensive term that includes
well-defined breeds as well as groups of animals that
have not yet been defined as a breed (Ajmone-Marsan
et al., 2023). In this study, both terms were used as
synonyms and the acronym Ze was used when both
zebuine breeds (Brahman and Nellore) were analyzed
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or visualized together. Table 1, Table S1 and Figure 1
summarize the main characteristics of the sampled
populations.

Genotyping and quality control

Genomic DNAs were isolated from white blood cells using
the commercial kit Wizard® Genomic DNA Purification
(Promega, WI, USA) according to the protocol sup-
plied by the manufacturer. They were genotyped in a
GeneTitan™ platform (Applied Biosystems™, CA, USA)
using the microarrays Axiom™ Bos 1 Genotyping Array
r3 (Applied Biosystems™) containing 648 855 SNPs, and
the custom array ArBos 1 containing 58088 SNPs. Raw
data were processed using Axiom™ Analysis Suite soft-
ware 4.0 (Applied Biosystems™), setting sample and SNP
call rates at 297%. Datasets were exported in .PED and
.MAP file format for further analyses. Furthermore, the
following filters were applied using the command imple-
mented in pLINK 1.9 software (Purcell et al., 2007): geno-
type call rate (-mind 0.05), minor allele frequency (-maf
0.05) and Hardy—Weinberg equilibrium (-hwe >0.001).
The SNP position was assigned according to the bovine
genome reference UMD 3.1. A single genotype matrix
was constructed using the merge function in pLINK V1.9,
resulting in a final database of 48360 common SNPs. In
addition, a second dataset was constructed, comprising
4964 common SNPs between the microarrays used in
the present work and the 76524 SNPs used by Corredor
et al. (2023; Illumina Bovine HD Genotyping BeadChip
and Illumina GGP Bovine 100K BeadChip) for AFB.

Genetic diversity, inbreeding
coefficients and kinship

The mean genetic diversity within each population was
quantified via the observed heterozygosity (H,,) and ex-
pected heterozygosity (), using allele frequency with
the -het function in pLINK V1.9. H, and H were calcu-
lated using the 4§ K database, with the exception of AFB
that was estimated using the 76 K microarray.

Two parameters were selected to evaluate inbreeding
levels within populations using genomic data, as de-
scribed below:

Runs of homozygosity
The minimum number of SNPs to compose a run of ho-

mozygosity ROH (L) was calculated according to the for-
mula described by Purfield et al. (2012):

- (1 _het)
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where ng is the number of SNPs per individual, n, is the
number of individuals, « is the percentage of false positive
ROH (set to 0.05) and 7 is the average SNP heterozygos-
ity across all SNPs. The ROH segments were divided into
groups according to their length in 1-2, 2-4,4-8, 8-16 and
>16 Mb (Goszczynski et al., 2018). To establish the number
of missing genotypes (1,,) and allowed heterozygotes (1)
in each ROH group, the following formula was used:

my,
y = — X Mg
dg
my,
ny=— Xeg
dg

where m; is the ROH minimum length, dg is the aver-
age distance between SNPs in the chromosome, e is
the genotyping error rate (0.25% according to Applied
Biosystems™ standard procedures) and mg is the aver-
age missing genotype rate in the chromosome (Purfield
et al., 2012). The ROH were estimated using pLINK V1.9
specifying the parameters: -homozyg, -homozyg-density,
-homozyg-kb, -homozyg-snp, -homozyg-window-het, and
-homozyg-window-missing. Finally, the inbreeding coeffi-
cient (F) of RHO (Fg,) was calculated for each animal
by dividing the length of the genome covered by ROH by
the total genotyped genome. The parameter values of the
PLINK commands mentioned above and the SNP database
used to estimate each ROH segment in the analyzed popu-
lations are detailed in Table S2.

Inbreeding coefficient

Fhat2, similar to the fixation index (Fg), was calcu-
lated using the 48 K database applying the function --
ibc in pLINK 1.9 software. This index depends on reliable
minor allele frequency estimations, for this reason it was
only calculated for breeds/populations with at least 20
animals.

Pairwise kinship coefficients between individuals
within and among populations were estimated using
the command --make-king-table in pLINk 2 (Chang
et al., 2015). This parameter was calculated using the
48 K database, with the exception of AFB that was es-
timated using the 76 K microarray. The inbreeding and
kinship results were visualized in a violin plot using the
GGprLOT R package (https://cran.r-project.org/).

Linkage disequilibrium and effective
population size

Linkage disequilibrium (LD) was estimated within
each population using the command --r2 --1d-window
1000 --1d-window-kb 1000 --1d-window-r2 0 imple-
mented in pLINK 1.9 and visualized with the ggplot R
package. In the case of effective population size (N,),
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FIGURE 1 Sampling sites of Creole
cattle: Argentine Creole (CrAr; blue);
Bolivian Creole (red) from Oruro (CrAl),
La Paz (CrHua), Cochabamba (CrCoch),
Centro de Ecologia Aplicada Simoén

1. Patifio (CrPat), Saavedrefio (CrSaa),
Yacumeilo (CrYa), Peruvian Creole
(AFB; yellow) and Uruguayan Creole
(CrUr; purple).

which represents the number of reproducing individu-
als, it was calculated based on LD according to the
method implemented in the sNep software (Barbato
et al., 2015) and for the current generation was based
on LD using N_ESTIMATOR V2 (Do et al., 2013). The LD
and N, were estimated using the 48K database, with
the exception of AFB that was calculated using the
76 K microarray.

Population composition

The population admixture was inferred using a Bayesian
clustering algorithm in FASTSTRUCTURE V1.0 (Raj
et al., 2014). To avoid the effect of uneven sample size
among populations described by Raj et al. (2014), this
cluster analysis was run with a similar number of individ-
uals from each population selected using a random num-
ber generator algorithm. This analysis was performed
using the 4964 SNPs dataset to include the AFB popula-
tion. The ChooseK algorithm showed that K12 was the
model complexity that maximized marginal likelihood
and K2 was the model component used to explain struc-
ture in data. The graphical representation of the results
was performed using pisTRUCT v.2.3 (Chhatre, 2018). In
addition, an alternative cluster analysis was performed
using the 48 K dataset, which excluded AFB. SNPs were
filtered using the function --indep implemented in PLINK

PERU

AFB \
> CrA].
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S

1.9 with the parameters 50 5 2, resulting in a panel of
25957 unlinked genetic markers.

Population relationships

A principal component analysis (PCA) was performed to
evaluate the relationship between populations. The PCA
was calculated with the 4K and 48 K SNP dataset, with
and without the AFB population, respectively, using the
--pca function in pLINK V1.9 and the results were visu-
alized using the ggrLoT2 R package. In addition, both
PCA plots were also constructed excluding the Br, Bh
and Ne populations to observe the relative position of
Creole cattle. To avoid the effect of uneven sample size,
PCAs were run with 20 individuals selected from each
population using a random number generator algorithm.
Populations with <20 individuals were also included with
all the available samples.

A cluster-stratified gene frequency matrix was con-
structed using the --freq --family function in pLINK V1.9
for both4 K and 48 K datasets. Nei's standard genetic dis-
tance (Nei, 1972) was calculated using the Gendist pro-
gramme in the PHYLOGENY INFERENCE PACKAGE (PHYLIP)
v3.6 (Felsenstein, 2005). The NEIGHBOR programme of
PHYLIP v3.6 was used to build neighbor-joining (NJ) and
UPGMA phylogenetic trees. The trees were visualized
using FIGTREE v1.4.4. (Rambaut, 2018).
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RESULTS

The genetic diversity analyses of Creole populations
showed that H ranged from 0.367 in CrUr to 0.462 in
AFB, whereas H varied from 0.352 in CrUr to 0.412 in
AFB. These values were similar to those estimated for
the taurine and zebuine breeds included in this work.
Also, the values of H, and H were similar in all cases
(Table 2). The results of the inbreeding levels estimated
using two coefficients (Fyyy, Fhat2) are shown in Table 2
and Figure Sla,b. The Fy,, showed that the proportion
of the genome covered by the total ROH varied within
and among populations, indicating different degrees of
inbreeding. In Creole cattle, these values ranged from
0.14 in CrUr to 0.03 in CrCoch and CrPat. The Fy,,
values were calculated according to their lengths in five
categories (1-2, 2-4,4-8, 8-16 and >16 Mb). Table S3 and
Figure 2 show the contribution of each segment where
the larger segments, mainly >16 Mb, accounted for the
greatest fraction of the total Fyy,, especially in CrUr
and CrAr. To assess the degree of relationship between
a pair of individuals, the kinship coefficient (¢) was de-
termined within and among populations. As shown in
Figure S2a, the average o values for Creole individuals
within populations corresponded to unrelated animals
(~0). However, some animals exhibited positive o values
compatible with third-degree, second-degree or parent—
offspring/full sibling relationships. CrPat presented the
highest mean ¢ (0.052+0.08). Commercial breeds that
included individuals from several farms and larger pop-
ulation sizes exhibited a similar o distribution. The pair-
wise kinship analysis between populations had positive
values for CrPat—CrSaa and CrCoch-CrAl, evidencing
some degree of relatedness (Figure S2b).

Another useful parameter to manage genetic re-
sources and conserve populations is N,, which is also
related to LD levels. Figure S3a,b shows the inferred N,
trends since 121 generations ago and the LD curves for
each population, respectively. All breeds/populations ex-
hibited a declining trend in N, values toward the present,
some of which overlapped. However, while the shapes of
the curves were almost identical, Creole cattle presented
a lower magnitude of N_ values than foreign breeds, with
the exception of CrAl. Values of N, were especially low in
CrPat, CrAr, CrCoch and CrUr (Table 3, Table S4). This
estimation evidenced that the current N, of the analyzed
Creole cattle population varied from a few individuals to
dozens of animals.

The cluster analysis results are summarized in
Figure 3 and Figure S4 for 4K and 25K SNP panels
respectively. K2 clearly differentiated the taurine and
Zebu components and showed that Bolivian Creole
cattle populations presented Zebu gene introgression.
This was mainly observed in CrSaa and CrPat (8.92
and 11.3%, respectively). K3 allowed discrimination
of the two taurine components and differentiation of
the AA and CrAr populations, whereas K4 added a
new taurine component that distinguished Ho. This
last component is also present in Creole cattle popula-
tions, with the exception of CrAr, and clearly remains
in CrAl and AFB even in K13. From K5 to K13, the
cluster analysis showed the complexity of Creole cat-
tle from Uruguay, Bolivia and Peru, and evidenced the
presence of four Creole groups: CrSaa—CrPat, CrAl-
CrCoch-AFB, CrHua—-CrYa and CrUr (see K5 and K6
in Figure 3 and Figure S4). The same general pattern
was obtained when cluster analysis was performed
using the 4 K and 25K SNP datasets. The PCA results

. TABLE 2  Genetic diversity, inbreeding

Breed Hy+SD Hy+SD Fron Fhat? Kinship coefficients and kinship values in
AA 0.359+0.021  0.365+0.0001 0.0940.04  0.017£0.06  —0.041+0.06 Angus (AA), Brahman (Bh), Brangus

(Br), Argentine Creole (CrAr), Bolivian
AFB 0.462+0.102  0.412+0.003 0.05£0.09  n.d. -0.0003+0.13 Creole from Oruro (CrAl), Cochabamba
Bh 0.349+0.015  0.353+0.0003 0.07+0.03  0.016+0.07 -0.036+0.07 (CrCoch), La Paz (CrHua), Centro de
Br 043120017  0435£0.0002  0.05+0.03 00132004  —0.021+0.04 Ecologia Aplicada Simén I. Patifio (CrPat),

Saavedreno (CrSaa), Yacumeiio (CrYa),
CrAl 0.378+0.030  0.389+0.0001 0.05£0.07  0.027£0.08  —0.068+0.09 Peruvian Creole (AFB), Uruguayan Creole
CrAr 0.377+0.024  0.374+0.0003 0.08+0.05  0.010+0.08 0.002+0.07 (CrUr) and Holstein (Ho).
CrCoch 0.394+0.023  0.388+0.00007  0.03+0.05  n.d. —0.042+0.10
CrHua 0.392+0.033  0.382+0.00006  0.04+0.04  n.d. ~0.065+0.03
CrPat 0.413+0.018  0.380+0.0002 0.03£0.04  —0.079+0.07 0.052+0.08
CrSaa 0.408+0.019  0.384+0.00009  0.04+0.03  n.d. —0.003+0.05
CrUr 0.367+0.031  0.352+0.00007  0.14+0.05  n.d. —0.019+0.05
CrYa 0.381+£0.009  0.368+0.00007  0.04+0.03  n.d. —0.003+0.05
Ho 0.379+£0.009  0.374+0.00006  0.04£0.02  —0.015£0.03  0.0023£0.03
Ne 0.421+0.377  0.378+0.00005  0.03£0.02  n.d. —0.048+0.04

Abbreviations: Fq, inbreeding coefficient (#) based on runs of homozygosity (ROH) index; Fhat2, similar
to the fixation index (Fg); Hy, expected and observed heterozygosity; H,, observed heterozygosity; n.d., not

determined, for breeds with <20 sampled animals.

“Average kinship estimated within each population.
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FIGURE 2 The mean sum of 0.08
inbreeding coefficient (F) based on runs )
of homozygosity (Fy) measured in o0
megabases (Mb) within each ROH length :
category for Argentine Creole (CrAr); _
Bolivian Creole form Oruro (CrAl), ' AFB
Cochabamba (CrCoch), La Paz (CrHua), 0.05 -
Centro de Ecologia Aplicada Simén ’ -Gl
L. Patifio (CrPat), Saavedreno (CrSaa), <
Yacumeiio (CrYa), Peruvian Creole (AFB) s o4 mGiEech
and Uruguayan Creole (CrUTr). . Cridua
0.03 B CrPat
M CrSaa
0.02 HCrYa
W CrUr
0.01 I
o 1o oe Dattedl clionull el
1-2 Mb 2-4 Mb 4-8 Mb 8-16 Mb >16 Mb
ROH length category
TABLE 3 Mean values of linkage b 2
disequilibrium () and the effective . Interval N (13 N,
population size (V,). The interval and Population Mean*  Interval (bp) median (bp) gen. Ago) (current)
interval mean indicate where the r* value AA 0.21 0-100000 50001 185 33.1
hes 0.2 fi h lation.
reaches T2 for each poputation AFB 0.18 0-100000 50001 52 36.4
Bh 0.19 0-100000 50001 107 17.4
Br 0.16 0-100000 50001 168 21.9
CrAl 0.15 0-100000 50001 213 39.8
CrAr 0.19 200000-300000 250000 35 9.6
CrCoch 0.21 0-100000 50001 59 10.5
CrHua 0.25 0-100000 50001 35 58
CrPat 0.25 0-100000 50005 58 4.8
CrSaa 0.25 0-100000 50001 39 19
CrUr 0.20 200000-300000 250000 41 13.8
CrYa 0.24 0-100000 50001 73 22.2
Ho 0.16 0-100000 50001 184 31

Abbreviations: AA, Angus; AFB, Peruvian Creole;Bh, Brahman; Br, Brangus; CrAl, Bolivian Creole from
Oruro; CrAr, Argentine Creole; CrCoch, Cochabamba; CrHua, La Paz; CrPat, Centro de Ecologia Aplicada
Simén 1. Patifo; CrSaa, Saavedrefio; CrUr, Uruguayan Creole; CrYa, Yacumeiio; Ho, Holstein.

“Values estimated based on linkage disequilibrium (LD) using Ny ESTIMATOR V2.

"Values estimated based on LD using SNEP software.

including all populations are shown in Figure S5a.i.
The first component accounted for 31.02% of the total
variance. This component showed a visible differentia-
tion between the taurine (negative values) and zebuine
(positive values) breeds. Within the Creole popula-
tions, CrAr clustered apart, whereas the other popula-
tions appeared together in the same cloud. The second
component captured 12.22% of the total variation and
differentiated the taurine populations, with the CrAr
located on the top side (higher positive values), the
Bolivian and Uruguayan Creole in the middle (around
the zero values), and the European taurine on the bot-
tom side (higher negative values). In addition, PCA
was carried out excluding the Br, Bh and Ne popula-
tions (Figure S5a.ii), showing a clearer discrimination

of Creole populations in agreement with the K3 and
K4 results mentioned above.

As expected, the NJ tree based on Nei's genetic dis-
tance (Figure S5b.i) clearly discriminated between the
taurine and zebuine breeds. The composite Br breed
was located in an intermediate position between these
clusters but closer to taurine, in accordance with its
breed composition (Alvarez-Cecco et al., 2022). This
result was in agreement with the PCA and admixture
analyses. Regarding the taurine group, Creole cattle
populations were distributed in sub-clusters according
to their historical and geographical distribution, and
European breeds formed an additional sub-cluster.
The UPGMA tree showed similar results (data not
shown). Similar results were observed when the NJ
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tree was performed with AFB using the 4K dataset
(Figure S5b.ii).

DISCUSSION

According to the FAO, there are around 3000 cat-
tle breeds in the world and about 800 are in danger of
extinction, while the risk status of another 1500 is un-
known because of a lack of population data. For this
reason, the need for action to protect them is recog-
nized in the Global Plan of Action for Animal Genetic
Resources (FAO, 2007), whose Strategic Priority Area 3
is devoted to the conservation of populations, including
the American Creole cattle populations. There are vari-
ous methods to conserve animal genetic resources, and
maintaining genetic variation remains essential. In this
sense, SNP panels allow the investigation of genetic di-
versity between populations and individuals, population
structure and inbreeding levels (FAO, 2013). The use of
genomic technology in small conserved populations is
very informative and highly recommended when possi-
ble (Pertoldi et al., 2014), mainly when demographic and
pedigree data are incomplete or absent. Most of the pre-
vious works in Creole cattle have focused on analyzing
the relationships between populations and breed compo-
sition, as well as on the detection of parental populations.

FIGURE 3 Structure analysis (K2—
K6) using the 4K dataset for Angus (AA);
Brahman (Bh); Brangus (Br); Argentine
Creole (CrAr); Bolivian Creole form Oruro
(CrAl), Cochabamba (CrCoch), La Paz
(CrHua), Centro de Ecologia Aplicada
Simon 1. Patifio (CrPat), Saavedreiio
(CrSaa), Yacumeno (CrYa); Peruvian
Creole (AFB), Uruguayan Creole (CrUr),
Holstein (Ho) and Nellore (Ne).
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The present work also evaluates parameters related to
genetic erosion risk, such as inbreeding levels, N, and
kinship in Creole cattle from Argentina, Bolivia, Peru
and Uruguay, using microarray data.

In the last century, Creole cattle have suffered a dras-
tic population fragmentation and reduction in their
population size (Giovambattista et al., 2001; Michiels
et al., 2023) because they have been displaced and/or
crossed with foreign introduced breeds. It was expected
that this process could cause a significant increase of
inbreeding level and kinship between purebred ani-
mals, resulting in small N, and genetic diversity loss.
Furthermore, the loss of population purity by gene
introgression could affect the local fitness (outbreed-
ing depression) of these valuable genetic resources.
However, the present analysis shows that the studied
populations still exhibit levels of genetic diversity (H
and H, ranging between 0.352 and 0.462), comparable
with those reported for other cattle breeds (e.g., Canas-
Alvarez et al., 2015; Kawaguchi et al., 2022; McTavish
etal., 2013; Michiels et al., 2023; Saravanan et al., 2022).
In agreement with these relatively high values of ge-
netic diversity, the Creole cattle populations showed
low average inbreeding levels measured through two
methods. In the currently studied Creole cattle pop-
ulations, the proportion of the genome covered by
ROH ranged between 3 and 7.6%, which was similar to
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those reported for other cattle breeds such as Retinta
(3%; Goszczynski et al., 2018), Nelore (4.7%; Zavarez
et al., 2015), Tharparkar (6.4%, Saravanan et al., 2022)
and Gyr cattle (7.01%, Peripolli et al., 2018). The excep-
tions were CrUTr (14%), with a similar value to Chinese
local cattle (11.5%, Xu, Zhao, et al., 2019) and a highly
inbred Retinta herd (15%, Goszczynski et al., 2018).
This result could be a consequence of the history of
the CrUr population that was founded with only 35 an-
imals in the 1930s and remained in genetic isolation for
more than 80years in the Santa Teresa National Park
(Armstrong et al., 2013). The total proportions of ROH
were distributed in groups according to their length
(1-2, 2-4, 4-8, 8-16 and >16 Mb) for each population.
Figure 2 shows the main contribution of long ROH, es-
pecially >16 Mb, as a result of recent breeding events
(Purfield et al., 2012). Moreover, segments of ~10 Mb
are traceable to inbreeding that occurred within the
last five generations while inbreeding levels that corre-
spond to events occurring in the last 50-20 generations
(~1-2Mb) in the studied Creole populations are scarce
(Howrigan et al., 2011).

In accordance with the Fy, results, the Fhat2 values
also showed low levels of inbreeding within Creole popu-
lations (<0.027), which were similar to those observed in
other breeds like Gyr (Peripolli et al., 2018) and Chinese
indigenous cattle breeds (Zhang et al., 2018), but lower
than those observed by Pryce et al. (2014) and Saravanan
et al. (2022).

In small cattle populations, like most of the studied
Creole cattle, it is important to know the kinship be-
tween individuals to design crossbreeding that prevents
inbreeding as much as possible and maximize N_. In this
study, kinship analysis showed that average values for
most populations corresponded to unrelated animals,
which could explain the low inbreeding levels mentioned
above. However, some animals exhibited values of third-,
second- and first-degree relationships between them.
Kinship evaluation between populations showed that
only animals from CrSaa and CrPat had positive values.
This is in agreement with the origin of these populations,
because CrPat was established in 2007 in the Centro de
Ecologia Aplicada Simoén 1. Patifio with CrSaa animals
from the Centro de Investigacion Agricola Tropical
(Pereira et al., 2015). This information could be valuable
when it is necessary to introduce closely related animals
to increase the size and genetic diversity of a small en-
dangered population while maintaining the distinct
characteristics of an adapted breed.

Maintaining the N_ across generations is crucial for
the long-time survival of a particular zoogenetic re-
source. Demographic and pedigree data have tradition-
ally been used to obtain N_ estimates in livestock (Flury
et al., 2010). However, native populations usually have
incomplete or absent demographic and pedigree data,
which makes them inapplicable. These approaches re-
main limited to populations belonging to experimental

ANIMAL GENETICS RYVTEvE

farms, such as CrAr from Leales, considering that it con-
tains complete pedigree information since 1959, when
it was established. To overcome this limitation, we esti-
mated the N_ based on LD using genomic SNP data. As
expected, the N_ in the studied commercial and Creole
populations declined over generations. The N, estima-
tion in Latin American Creole cattle is scarce; however,
this parameter was reported for several indigenous and
highly selected commercial cattle breeds, showing simi-
lar decay of N, over generations (Biegelmeyer et al., 2016;
Dlamini et al., 2022; Garcia et al., 2023; Jin et al., 2022;
Sargolzaei et al., 2008; Strucken et al., 2021; Sudrajad
et al., 2016; Xu, Zhu, et al., 2019). Creole populations
had an accelerated decline and presented lower values,
consisting of a few individuals compared with dozens
of animals for worldwide distributed breeds (Sargolzaei
et al., 2008; Biegelmeyer et al., 2016; Campos et al., 2022;
present work). Nevertheless, these results were similar to
those estimated for indigenous cattle breeds from India
(Strucken et al., 2021; N, =13, 30 and 43), Bangladesh
(Bhuiyan et al., 2021; N, =26.02-108.29 until five gener-
ations ago), Korea (Sudrajad et al., 2016; N_ =53-60 11
generations ago), China and Japan (Xu, Zhu, et al., 2019;
N, =27, 34 and 14 for South and North Chinese cattle,
and Black Japanese breed, respectively) and South Africa
(Dlamini et al., 2022; N, =56-99 for five generations
ago). Other native breeds such as Dabieshan Chinese
cattle (Jin et al., 2022; N_ =86 for one generation ago)
and Indian native cattle (Strucken et al., 2021; N, =399
for one generation ago) exhibited higher values. The sig-
nificant decrease of N, in recent generations in Creole
cattle populations agrees with the high contribution of
large segments of F, to the inbreeding values. It is im-
portant to remark that values of N, of more than 100 in-
dividuals are necessary to maintain genetic diversity and
fitness over the subsequent 10 generations and would
be sufficient for survival in the long term (Frankham
et al., 2014; Meuwissen, 2009). Considering the estimated
values of N_ for the evaluated Creole cattle, it is expected
that their population will shrink at least 10% in the next
S50years. This highlights the urgent necessity of applying
actions to increase the V..

Creole cattle populations are adapted to a wide
range of environments, such as highland plateaus,
temperate plains and valleys, tropical overflow plains
and dry forests, and they are usually isolated from one
another. During the process of migration to new envi-
ronments and the further process of adaptation, these
populations can diverge as a consequence of natural
selection and/or stochastic evolutionary forces (ge-
netic drift and inbreeding). In addition, recent events
of admixture can contribute to genetic divergence. In
this context, molecular data can not only be useful to
determine the risk status as discussed above, but also
to estimate the genetic distance between populations
and the breed purity. High genetic similarity to not-
at-risk breeds indicates low distinctiveness and thus
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diminishes the conservation priority of a breed, con-
sidering that economic resources are usually limited.
In this work, we addressed this issue through PCA and
cluster analyses, showing that the extreme position of
CrAr in PC2 agrees with data reported by Michiels
et al. (2023) using low density microarrays. However,
this contrasts with previous results based on micro-
satellite data showing that the Argentine and Bolivian
Creole populations are located at an intermediate po-
sition (Liron, Bravi, et al., 2006; Lirén, Peral-Garcia,
et al., 2006). Ginja et al. (2019) grouped the CrAr and
CrUr populations in the same cluster using microsat-
ellites, while CrYa was located with Brazilian Creole
populations. In the present work, based on SNP data,
Bolivian Creole cattle can be divided into three groups:
populations adapted to highlands; subtropical beef
lowland; and dual-purpose lowland. The analysis of
population structure differentiated the taurine and
Zebu components in K2, revealing the introgression of
Zebu genes into the Bolivian Creole populations that
are located in subtropical lowland plain, and especially
in CrPat (0.114) and CrSaa (0.089). This is consistent
with data presented by Giovambattista et al. (2000),
indicating that Bolivian Creole populations had Bos
indicus Y-chromosome haplotypes, which were ab-
sent in the southernmost populations (CrAr and CrUr)
and highland populations (CrAl, CrHua, CrCoch and
AFB). This difference could be explained by histori-
cal data of geographic distribution and adaptation to
environmental conditions. In the eighteenth and nine-
teenth centuries, Brazil introduced zebuine animals to
improve native populations in this tropical region, and
these animals were exported to other Latin American
countries like Bolivia and crossed with Creole cattle.
On the contrary, Bolivia Creole cattle from the high-
land plain evidenced introgression with Ho, which
could be explained by the introduction of this breed
to improve dairy production during the last decade.
Also, in agreement with Michiels et al. (2023), CrAr
appeared as a highly differentiated genetic pool when
the K-value increased (K3), probably because of the
routes of colonization of South America (Martinez
et al., 2012).

In conclusion, in the present work we show that it is
possible to have a more detailed status of Creole cat-
tle populations by combining different approaches
and using genomic data. This allows a more informed
management of these populations such as crossbreed-
ing within and among private and experimental herds
with similar genetic backgrounds, while avoiding high
levels of inbreeding and ultimately preserving adaptive
variation.
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